Radcliffe Hall CE/Methodist

 Primary School
Calculation Policy

Key Vocabulary: sum, total, parts and wholes, plus, add, altogether, more, is equal to, is the same as

Stage	Concrete	Pictorial	Abstract
1	Combining two parts to make a whole (use other resources too e.g. shells, eggs, teddy bears).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, three is a part and the whole is seven.
2	Counting on using number lines, using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the total of 4 and 2 ? $4+2$
3	Regrouping to make 10; using ten frames and counters/cubes or Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

Different ways to ask children to solve 21 + 34				
	Word problems: In year 3, there are 21 children and in year 4 , there are 34 children. How many children in total? $21+34=55 \text {. Prove it }$	$\begin{gathered} 21 \\ +34 \\ \overline{21+34}= \\ \mathbf{T}=21+34 \end{gathered}$ Calculate the sum of twenty-one and thirty-four.		
?			10s	1s
21 34			-	(1)
			$\bigcirc \bigcirc$?
			?	5

4	Making 10 using ten frames 14-5	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $\begin{aligned} & 14-4=10 \\ & 10-1=9 \end{aligned}$
5	Column method using base 10. 48-7	Children to represent the base 10 pictorially.	Column method or children could count back 7. $\begin{array}{r} 48 \\ -\quad 7 \\ \hline 41 \end{array}$
6	Column method using base 10 and having to exchange. $41-26$	Represent the base 10 pictorially, remembering to show the exchange.	Formal column method. Children must understand that when they have exchanged the 10, they still have 41 because $41=30+11$. $\begin{array}{r} 3 / 41 \\ -26 \\ \hline 15 \end{array}$
7	Column method using place value counters $234-88$	Represent the place value counters pictorially; remembering to show what has been exchanged.	Formal column method. Children must understand what has happened when they have crossed out digits. $\begin{array}{r} 234 \\ -\quad 88 \\ \hline 6 \\ \hline \end{array}$

Different ways to ask children to solve 391-186				
		Raj spent $£ 391$, Timmy spent $£ 186$. How much more did Raj spend? Calculate the difference between 391 and 186.		Missing digit calculations
186	?		What is 186 less than 391 ?	$\square 0 \quad 5$

Key Vocabulary: double, times, multiplied by, the product of, groups of, lots of, equal groups.			
Stage	Concrete	Pictorial	Abstract
1	Repeated grouping/repeated addition. $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model. ?	$\begin{aligned} & \hline 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
2	Number lines to show repeated groups 3×4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4=12$
3	Use arrays to illustrate commutativity (counters and other objects can be used too). $2 \times 5=5 \times 2$	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$

4	Partition to multiply using Numicon and base 10. 4×15	Children to represent the concrete manipulatives pictorially.	Children encouraged to show the steps they have taken. $\begin{array}{r} 10 \times 4=40 \\ 5 \times 4=20 \\ 40+20=60 \end{array}$
5	Formal column method with place value counters or base 10. 3×23	Children to represent the counters pictorially.	Children to record what it is they are doing to show understanding. . $\begin{array}{cc} 3 \times 23 & 3 \times 20=60 \\ 10 & 3 \times 3=9 \\ 20 & 60+9=69 \\ 23 & \\ \times \quad 3 & \\ \hline 69 & \\ \hline \end{array}$
6	Formal column method with place value counters. 6×23	Children to represent the counters/base 10, pictorially.	Formal written method. $\begin{array}{r} 6 \times 23= \\ 23 \\ \times \quad 6 \\ \hline \frac{138}{11} \end{array}$
7	When the children start to multiply 3d x 3d and 4d x abstract. To get 744 children have solved 6×124. To get 2480 they have solved 20×12.	etc., they should be confident with the	Formal column method. Children must understand what has happened when they have crossed out digits.

Different ways to ask children to solve 23×6

23	23	23	23	23	23

$?$

Mai had to swim 23 lengths, 6 times a week.
How many lengths did she swim in one week?
With the counters, prove that 6×23
$=138$

Find the product of 6 and 23
$6 \times 23=$
[-7 $=6 \times 23$
$=138$

What is the calculation?
What is the product?

100s	10s	1s
	88	000
	88	808
	88	088
	88	080

Different ways to ask children to solve $615 \div 5$					
Using the part whole model below, how can you divide 615 by 5 without using short division?	I have £615 and share it equally between 5 bank accounts. How much will be in each account? 615 pupils need to be put into 5 groups. How many will be in each group?		What is the cal What is the an	ulation? wer?	
		$5 \longdiv { 0 1 5 }$	100s	10s	1s
					00000
		$615 \div 5=$	${ }^{-}$	$\begin{aligned} & 50000 \\ & 00000 \end{aligned}$	$\left\|\begin{array}{l} 00000 \\ 00000 \end{array}\right\|$

